ANALYSES OF SOME MINERAL WATERS FROM TEXAS.

BY C. F. CHANDLER AND E. WALLER.

In the Bulletin of the United States Geological Survey No. 32 (Mineral Springs of the United States), among the analyses of Texas waters, appear some partial analyses, with a reference to C. F. Chandler as analyst. The results there quoted were no doubt communicated by the proprietors of the springs, and represent the kind of examination requested by them. Those waters, however, and a few others examined about that time, were sufficiently interesting to induce us to make more extended examinations, which we think may be worthy of record.

The presence of weighable quantities of manganese in the most of these waters, as well as in some cases traces of zinc and copper, first attracted our attention as being not very common constituents of mineral waters. Indeed we have heard the opinion expressed that zinc and manganese were unheard of. But S. Dana Hayes reports the presence of 18.831 grains Zn SO, in a water from Mercer Co., W. Va. (Am. Chem., V., 277). Prof. Hardin's report on the Rockbridge Alum Springs of Virginia shows weighable quantities of Mn. Zn and Cu in those waters (Am. Chem., IV., 247), and Prof. Mallet finds Mn and Cu in the Capon Springs of W. Va. We have also found Mn in other mineral waters from Virginia. and a search through Dr. Peale's collection of statistics (Bulletin No. 32 above referred to) shows that the presence of manganese is recorded in waters from some 36 different localities, representing fifty or more springs. Many of these are waters from Pennsylvania, reported by Dr. Genth, but the element has been found by other analysts in waters from many other States. It is also reported as a constituent in several European waters, e. g., the Vosges Mountains (C. Rend., Mar., 1880), the Pyrenees, Garegou (C. Rend., LXXXIV., 963), Birresborn (Berichte IX., 987), Bad Helmstedt (Jour. Pr. Chem., 1873, No. 5), etc.

Manganese no doubt has a therapeutical value, but on that point we do not feel competent to express a decided opinion.

The waters have been named according to the places from which they were sent. With the exception of the Houston water, which was alkaline, the waters were neutral, no free acid being discernable by tests with methyl orange or by any other means. In the Waco and Kosse waters, the acid present was insufficient to satisfy all of the bases present, leading to the inference that either basic salts were present, or, what we think is more probable, that the alumina or ferric oxide was combined with some organic acid or compound of unknown composition. A similar case is on record—Orchard Alum Springs of England, Dr. Thresh (*Chem. News*, XLVI., 226).

As to ferric compounds, in many cases the suspicion comes into the mind of the analyst, that oxidation may sometimes have occurred after drawing the water from the spring, but he can only report the conditions which he actually finds.

We give the details of actual quantities of bases found, as well as the probable combinations.

-	Wootan No. 1.	Wootan.	Hearne.	Waco.	Bryan.	Kosse.	Houston
Na ₂ O K ₂ O Li ₂ O			34.163 1.918	$\begin{array}{r} 12.405\\ 1.322\end{array}$	$5.668 \\ 1.257$	1.602	30.621 4.380 trace.
Mg O Ca O Ba O	$22.480 \\ 43.230$	$\begin{array}{c} 30.000\\ 46.470\end{array}$	45.607 71.943	$\begin{array}{c} 18.569 \\ 44.125 \end{array}$	$\begin{array}{c} 16.036\\32.477\end{array}$	5.616 9.209	26.339 55.794 trace.
Zn O Mn O Fe O	$\left.\begin{array}{c}0.930\\3.287\\\end{array}\right\rangle$	25.81	1.350 25.455	$\begin{array}{c} 0.540\\ 20.801\end{array}$	trace. 0.660 25.922	1.700	0.167
Fe ₂ O ₃ Al ₂ O ₃ Cu O Cl	$ \begin{array}{c} 1.696 \\ 2.092 \end{array} $ 41.739	60.800	$6.640 \\ 6.784 \\ 27.886$	$\begin{array}{r} 6.209 \\ 0.650 \\ 12.977 \end{array}$	$5.347 \\ 7.330 \\ 6.849$	6.539 1.834	$0.175 \\ 0.185 \\ 102.200$
SO_3 $P_2 O_5$ $Si O_9$	41.739 102.320 5.63	5.550	21.000 255.430 0.140 4.420	127.238 5.485	6.849 184.212 11.055	1.834 44.940 5.20	29.243 0.020 2.290
Loss by ig'n Res. Evap'n	16.50	21.000 340.200	25.000 530.000	6.500 270.500	24.30 317.00	3.300 88.680	32.000 275.000

(Parts per 100,000.)

(Parts per 100,000.)

	Wootan No. 1.	Hearne.	Waco.	Bryan.	Kosse.	Honston.
Na Cl Mg Cl ₂	43.819 20.732	45.934	21.387	10.694	3.023	57.686 62.423
Ca Cl ₂ Mn Cl ₂ Cu Cl ₂					0.700	82.257 0.300 trace.
$\begin{array}{c} \operatorname{Na}_2 & \operatorname{SO}_4 \dots \\ \operatorname{K}_2 & \operatorname{SO}_4 \dots \\ \operatorname{Mg} & \operatorname{SO}_4 \dots \\ \operatorname{Co} & \operatorname{SO}_4 \end{array}$	6.644 41.25 104.99	$\begin{array}{r} 22.463 \\ 3.547 \\ 136.822 \\ 174.720 \end{array}$	2.451 2.445 55.708 107.160	$2.325 \\ 48.108 \\ 78.872$	$9.700 \\ 16.848 \\ 22.365$	8.108 43.375
Ca SO_4 Zn SO_4 Mn SO_4 Fe SO_4	1.979 6.939	2.871 58.739	1.148 43.912	trace. 1.404 54.735	3.526	
$ \begin{array}{c} \operatorname{Fe}_{2} (\operatorname{SO}_{4})_{3} \\ \operatorname{Al}_{3} (\operatorname{SO}_{4})_{3} \\ \operatorname{Na}_{2} \operatorname{HPO}_{4} \end{array} $	4.238 6.976	$16.602 \\ 22.624 \\ 0.281$	2.168	13.367 24.440	5.745	0.041
Li HCO_{3} . Ca $(HCO_{3})_{2}$ Ba $(HCO_{3})_{2}$						trace 62,575 trace.
$ \begin{array}{c} Fe (HCO_s)_s \\ Si O_2 \\ Fe_2 O_3 \\ \end{array} $	5.630	4.42 0	$5.485 \\ 6.209$	11.055	5.400	0.389 2.290
Al ₂ O ₃ Loss by ig'n Res. Evap'n	16.50 256.70	25.00 530.30	6.500 270.500	24.300 317.00	4.816 3.300 88.680	$\begin{array}{r} 0.185 \\ 32.00 \\ 275.00 \end{array}$

(Grains per U. S. gallon of 231 cu. in.)

	Wootan No. 1.	Hearne.	Waco.	Bryan.	Kosse.	Honston.
Na Cl Mg Cl	$\begin{array}{r} 45.263\\12.090\end{array}$	26.788	12.469	6.236	1.763	33.641 36.404
Ca Cl ₂ Mn Cl ₂						$ \begin{array}{c} 30.404 \\ 18.812 \\ 0.175 \end{array} $
$Cu Cl_{s}$ Na _s SO ₄		13.100	1.429		5.657	trace.
K_2SO_4 Mg SO_4	$\begin{array}{r} 3.875 \\ 24.056 \end{array}$	2.068 79.792	$1.426 \\ 32.488 \\ 32.481 \\ 32$	$1.486 \\ 28.056 \\ 1.000$	9.825	4.728
$Ca SO_4$ Zn SO ₄ Mn SO ₄	61.228 1.154	101.893	62.494 0.670	45.997 trace. 0.819	13.043	25.296
$Fe SO_4$ $Fe_{\bullet}(SO_4)_{\bullet}$		$ 31.340 \\ 9.861 $	25.607	81.920 7.795	2.056	
$Al_2(SO_4)_3$ Na ₃ HPO ₄	4.068	$\begin{array}{r} 13.192\\ 0.164 \end{array}$	1.264	14.230	3.350	0.024
Li HCO_8 Ca $(HCO_8)_8$ Ba $(HCO_8)_8$						trace. 36.492 trace.
$\operatorname{Fe}(\operatorname{HCO}_{8})_{2}$ SiO_{2}		2.578	3.199	6.447	3.149	0.227 1.335
$Fe_{9}O_{8}$ $Al_{2}O_{8}$			3.621		2.809	0.108
Loss by ig'n Res. Evap'n	$9.622 \\ 149.702$	$\begin{array}{r} 14.579 \\ 309.260 \end{array}$	$\begin{array}{r} 3.791 \\ 157.488 \end{array}$	$\begin{array}{r} 14.171 \\ 175.945 \end{array}$	$\begin{array}{r} 1.924 \\ 52.369 \end{array}$	$\begin{array}{c} 18.662 \\ 157.750 \end{array}$